Pairs of elliptic curves with maximal Galois representations
نویسندگان
چکیده
منابع مشابه
Galois Representations and Elliptic Curves
An elliptic curve over a field K is a projective nonsingular genus 1 curve E over K along with a chosen K-rational point O of E, which automatically becomes an algebraic group with identity O. If K has characteristic 0, the n-torsion of E, denoted E[n], is isomorphic to (Z/nZ) over K. The absolute Galois group GK acts on these points as a group automorphism, hence it acts on the inverse limit l...
متن کاملElliptic Curves with Surjective Adelic Galois Representations
Let K be a number field. The Gal(K/K)-action on the the torsion of an elliptic curve E/K gives rise to an adelic representation ρE : Gal(K/K) → GL2(Ẑ). From an analysis of maximal closed subgroups of GL2(Ẑ) we derive useful necessary and sufficient conditions for ρE to be surjective. Using these conditions, we compute an example of a number field K and an elliptic curve E/K that admits a surjec...
متن کاملMod 4 Galois Representations and Elliptic Curves
Galois representations ρ : GQ → GL2(Z/n) with cyclotomic determinant all arise from the n-torsion of elliptic curves for n = 2, 3, 5. For n = 4, we show the existence of more than a million such representations which are surjective and do not arise from any elliptic curve.
متن کاملElliptic Curves with Maximal Galois Action on Their Torsion Points
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, ρE : Gal(k/k) → GL2(b Z). For a fixed number field k, we describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves over k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2013
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2013.03.002